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Abstract

Lately, many cloud-based applications proposed Attribute-Based En-
cryption (ABE) as an all-in-one solution for achieving confidentiality and
access control. Within this paradigm, data producers store the encrypted
data on a semi-trusted cloud server, and users, holding decryption keys is-
sued by a key authority, can decrypt data according to some access control
policy. To be used in practical cases, any ABE scheme should implement
a key revocation mechanism which assures that a compromised decryption
key cannot be used anymore to decrypt data. Yu et al. (INFOCOM 2010)
introduced an ABE scheme with revocation capabilities that enjoys sev-
eral unique advantages, such as reactivity and efficiency. In the scheme,
the cloud server is entitled to update keys and ciphertexts in order to
achieve revocation. Unfortunately, the cloud server retains the power to
undo the revocation of a key (revocation undoing attack) so endangering
confidentiality. In this paper, we propose a revocable ABE scheme that
still ensures the advantages of Yu et al.’s scheme, but it also resists to the
revocation undoing attack. We formally prove the security of our scheme
and show through simulations that the user experiences a slightly higher
computational cost with respect to Yu et al.’s scheme.

1 Introduction

Attribute-Based Encryption (ABE) is a type of public-key cryptography able to
provide confidentiality and fine-grained access control over the encrypted data.
It is particularly suitable for applications in which the data is stored on semi-
trusted storage services and should be accessed by users with different access
privileges. ABE has been widely employed in disparate scenarios, e.g., IoT [1–6],
digital health [7–9], blockchain [10,11], and many others.
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In ABE systems, a key authority generates public parameters for encryption
and decryption keys for decryption. We refer to an encrypting entity as data
owner and a decrypting entity as user. In practical applications, data owners
store the encrypted data on some server, while users retrieve ciphertexts from it.
Often, the storage service is provided by a third-party server, e.g., a cloud server,
which is usually considered in the literature to be honest-but-curious, meaning
that it does not deviate from the specified protocol, but it is also interested in
accessing the encrypted data stored on it.

ABE schemes typically fall into two categories: Key-Policy Attribute-Based
Encryption (KP-ABE) and Ciphertext-Policy Attribute-Based Encryption (CP-
ABE). In KP-ABE schemes [12], ciphertexts are labeled with a set of attributes,
and decryption keys embed an access policy defined over the attributes. Con-
versely, in CP-ABE schemes [13], ciphertexts embed the access policy, and de-
cryption keys are labeled with a set of attributes.

In order to be useful in a practical case, any ABE scheme should implement
a key revocation mechanism, which assures that a given decryption key cannot
be used anymore to decrypt data. This is mandatory for example in case of
key compromise. In a real-life scenario, the key authority revokes a decryption
key when a user detects or suspects the compromise of his/her key, or when it
becomes aware of an (alleged) compromise from third parties or public sources.
Over the years, plenty of revocable ABE schemes have been proposed [14–18].
Existent ABE key revocation mechanisms can be classified into two categories:
direct revocation and indirect revocation. Direct revocation is performed by
maintaining the list of revoked users on each data owner, which encrypts data so
as to exclude revoked keys from being capable of decrypting it. The drawback
of this technique is that all data owners must have an updated copy of the
revocation list. In indirect revocation, the key authority issues key update
material through which only non-revoked users’ decryption keys are updated.
In the present paper, we focus on indirect revocation mechanisms.

Yu et al. [17] introduced an indirect revocable KP-ABE scheme in which
revocation is achieved by a system-wide update of the attributes present in
the key to revoke. Only the non-revoked decryption keys having at least an
attribute in common with the revoked one are updated, while the revoked key
is excluded from the update process. The advantage of this method with respect
to others in the literature, e.g., [14–16], is threefold: (i) as long as no revocation
occurs, the key authority can stay offline and perform no action; (ii) when a
revocation occurs, not all the users –but only a portion of them, that we call
affected users– need to update their decryption keys; and (iii) the revocation
comes into force with immediate effect, and there is no need to wait for the end
of some predefined time epoch.

In Yu et al.’s scheme, the task of updating affected users’ decryption keys is
delegated to the cloud server. To this aim, the cloud server is given some secret
quantities, called re-encryption keys, through which it updates both affected
users’ decryption keys and ciphertexts (re-encryption) previously stored on it.
Crucially, in this scheme, the re-encryption keys can also be used to update
revoked keys, enabling them to decrypt data again. Whoever comes into pos-
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session of the re-encryption keys can privately “undo” key revocations. This is
a realistic threat that may occur whenever the curious cloud server comes into
possession of a revoked key, or if a revoked user breaches the cloud server. A
successful revocation undoing attack would lead to a breach of confidentiality.
Indeed, it would allow an adversary to decrypt all the ciphertexts that the key
was authorized to access, thus retrieving the sensitive or valuable information
that was intended to be read only by authorized users.

In this paper, we propose a revocable KP-ABE scheme that enjoys all the
advantages of the Yu et al.’s scheme but also ensures data confidentiality even
if the cloud server comes into possession of a revoked key, thus guaranteeing
revocation undoing resistance. The main idea is to distribute the task of updat-
ing affected users’ decryption keys to both the cloud server and the users. That
is, in our scheme a decryption key update is accomplished by a double update
through two different re-encryption keys held by the cloud server and by the
non-revoked users, and called cloud re-encryption key and user re-encryption
key, respectively. In our construction, we show how the user re-encryption
keys can be efficiently distributed only to non-revoked users. This assures that
even if the cloud server comes into possession of a revoked key, it cannot undo
the key revocation because it lacks the user re-encryption keys. We then for-
mally prove that the proposed scheme is secure in the Selective-Set model under
the Decisional Bilinear Diffie-Hellman assumption. Finally, we analyze storage,
communication, and computational costs, and we perform simulations to show
that in our scheme the user experiences a slightly higher computational cost
with respect to the Yu et al’s scheme [17]. Considering an IoT scenario, for ex-
ample a smart city application like in [6,19], and assuming 8000 users equipped
with Raspberry Pi boards and revocations occurring on average every six hours,
a one-year-long simulation reveals that the average user experiences a load (in
terms of computation time) 7.37% higher than Yu et al.’s scheme. Also, the
simulations show that our scheme is scalable with the number of users, i.e., the
more users are in the system, and the less load introduced to each user.

The rest of this paper is organized as follows. Section 2 discusses related
work. Section 3 introduces some background on ABE and other related tech-
niques that we use in our scheme. Section 4 describes our model, assumptions,
and construction. Section 5 analyzes the security of our scheme with formal
proofs. Section 6 analyzes the cost of each scheme procedure and evaluates the
performance through simulations. Section 7 concludes the paper.

2 Related Work

Plenty of ABE schemes have been introduced in the recent past. These schemes
mainly aim at lowering the computational cost of encryption/decryption prim-
itives either by outsourcing part of them to trusted parties [20–23], or by re-
defining them [24, 25], or by using new constructions [26]. Other schemes [14–
18,27–30] aim at adding a key revocation mechanism, which is essential in order
for ABE to be practical and therefore adopted on a large scale. In this section,
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we review some relevant indirect revocation schemes.
Indirect revocation can be further divided into two categories: (i) user-wise

indirect revocation, and (ii) attribute-wise indirect revocation. In user-wise
indirect revocation, the key authority can only revoke a whole decryption key
associated with a user. Each user is given a decryption key and an identifier.
During revocation, the key authority revokes an identifier, and then it issues
key update material through which only non-revoked users’ decryption keys are
updated. In attribute-wise indirect revocation, the granularity of revocation is
finer. That is, the key authority can revoke a subset of attributes embedded
in a user’s decryption key. This is desirable, for instance, if some user’s access
privileges change, and the key authority wants to provide the user with a more
restrictive access policy. Notably, as in user-wise revocation, the key authority
can always revoke a whole decryption key associated with a user.

Ref. Paradigm
Key authority Immediate Revocation Revocation
goes online Revocation mode undoing resistance

[14] KP-ABE Periodically No User-wise Yes
[15] CP-ABE Periodically No User-wise Yes
[16] CP-ABE Periodically No User-wise Yes
[27] KP-ABE and CP-ABE Periodically No User-wise Yes
[28] CP-ABE Periodically No User-wise Yes
[29] CP-ABE Only in case of revocation Yes User-wise No
[17] KP-ABE Only in case of revocation Yes Attribute-wise No
[18] CP-ABE Always Yes Attribute-wise Yes
[30] KP-ABE Only in case of revocation Yes Attribute-wise No
Our KP-ABE Only in case of revocation Yes Attribute-wise Yes

Table 1: Comparison with existing indirect revocable ABE schemes.

Boldyreva et al. [14] proposed a user-wise indirect revocable KP-ABE scheme
in which the key authority makes some key update material public. By using the
information contained in the key update material, only the non-revoked users are
capable of updating their decryption keys, while the revoked user is not. This
scheme is slotted, i.e., the time is divided into epochs, and the key update process
is performed by the key authority at the beginning of every new epoch. This
means that the key authority must go online periodically to publish the update
material, even if no key revocation has occurred in that epoch. Moreover, all the
users must download the update material at each epoch, and this operation may
be burdensome. Finally, a key cannot be promptly revoked after its compromise,
but the key revocation comes into force only after the end of the current epoch.
In [15] and [16], the authors extended the techniques of Boldyreva et al. [14] in
the CP-ABE setting. These schemes delegate the majority of the workload to an
untrusted cloud server. However, also in these schemes the key authority must
go online at the beginning of every new epoch and a key cannot be promptly
revoked after its compromise. Also in [27] and [28], the revocation approach
is time slotted and at user level. Therefore, an immediate and fine-grained
revocation cannot be reached. Differently from all these schemes, in our scheme
a key revocation comes into force with immediate effect, and the key authority
performs no operation as long as no decryption key must be revoked. In addition,
since our revocation is performed at attribute level, only a portion of users are
affected by each key revocation.
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Yang et al. [18] proposed an attribute-wise indirect revocable CP-ABE scheme
in which the key revocation has an immediate effect. However, to have his/her
key updated, every affected user must establish a secure channel with the key
authority. Therefore, the key authority must be always online because key up-
date requests from users can happen anytime. On the contrary, in our scheme
the key authority just stores secret quantities on the cloud server, and then it
can go back offline.

In 2019, Ma et al. [29] proposed a user-wise indirect revocable CP-ABE
scheme in which the revocation has an immediate effect. The cloud server
holds secret quantities, called cloud-side keys, which it uses to re-encrypt the
ciphertexts. The cloud server uses the cloud-side key to partially decrypt the
ciphertext to be sent to the user. Crucially, if the cloud server comes into
possession of a revoked key, it can use the cloud-side key to undo the revocation.

Hur and Noh [30] proposed an attribute-wise indirect revocable KP-ABE
scheme in which the key revocation has an immediate effect. The cloud server
holds secret quantities, called attribute group keys, which it distributes only to
non-revoked users for key update purposes. Crucially, if the cloud server comes
into possession of a revoked key, it can use the attribute group keys to undo the
revocation.

Yu et al. [17] proposed an attribute-wise indirect revocable KP-ABE scheme
in which the key authority goes online only at key revocation events, and the
key revocation has an immediate effect. When a key must be revoked, the key
authority performs a system-wide update of the attributes embedded in that
key, it stores on the cloud server some secret quantities (re-encryption keys),
and finally, it can go back offline. The cloud server updates affected users’
decryption keys without learning anything of the decryption keys themselves.
The disadvantage of this scheme is that the curious cloud server knows the
re-encryption keys that are able to update also any revoked key. Our scheme,
which is based on [17], introduces additional security with limited additional
cost. In particular, it avoids that the cloud server in possession of a revoked key
is able to undo a key revocation and, thus, authorize the revoked key to access
the data again.

3 Background

3.1 KP-ABE: The GPSW Scheme

In KP-ABE, ciphertexts are labeled with a set of attributes, and decryption
keys embed an access policy defined over some attributes. The access policy is a
Boolean formula and can be expressed as a tree. If the access policy is satisfied
by the attributes labeling the ciphertext, the decryption key is able to decrypt
the ciphertext. The attributes present both in the ciphertext and in the decryp-
tion key evaluate to true, and the access policy is satisfied if the Boolean formula
evaluates to true. To give an example, the access policy AAND (EORC) is
satisfied by the set {A,E, F}, but it is not satisfied by the set {C,E,B}.
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Let an access policy T be defined as a tree. Each node x of the tree is
described by a threshold gate of type kx-of-nx, where kx is its threshold value,
and nx is the number of child nodes of x. A generic kx-of-nx threshold gate
evaluates to true, i.e., is satisfied, if at least kx of its nx children are satisfied. A
threshold gate of type 1-of-nx implements an OR gate, while a threshold gate of
type nx-of-nx implements an AND gate. All the leaf nodes represent attributes
and are described by a threshold value kx = 1.

Let G1 be a multiplicative cyclic group whose group operation is efficiently
computable. Let p be its prime order, and let g be a generator of G1. Let
e : G1 ×G1 → GT be a bilinear map that is efficiently computable and has the
properties of bilinearity and non-degeneracy [12].

The first KP-ABE scheme introduced in literature [12] (henceforth, the
GPSW scheme) is defined by four primitives, namely GPSW.Setup, GPSW.Encrypt,
GPSW.KeyGen, and GPSW.Decrypt.
(MK,PK) = GPSW.Setup(U). Defined the universe of the attributes U =
{1, . . . , n}, choose y, t1, . . . , tn uniformly at random in Zp. Then compute T1 =
gt1 , . . . , Tn = gtn and Y = e(g, g)y. Output the public parameters as PK =
(Y, T1, . . . , Tn) and the master key as MK = (y, t1, . . . , tn).
CT = GPSW.Encrypt(M,γ, PK). To encrypt the message M ∈ GT under
the set of attributes γ (encryption attributes), choose a number s uniformly
at random in Zp. Then compute ct̂ = MY s, and for each attribute i ∈ γ
compute the ciphertext component cti = T s

i . Output the ciphertext as CT =
(ct̂, {cti}i∈γ).
DK = GPSW.KeyGen(T ,MK). Let T be an access policy defined over a set of
attributes λ (access policy attributes). The algorithm defines a random polyno-
mial qx of degree degx = kx − 1 for each node x, starting from the root node
and proceeding in a top-down manner. For the root node ρ, set qρ(0) = y and
other degρ random points to define it completely. Then, associate each child
node x with a unique number index(x). Proceed for any other node x, setting
qx(0) = qparent(x)(index(x)) and other degx random points to define the polyno-
mial completely. The polynomial for the leaf nodes are defined only by qx(0).

For each leaf node, define the decryption key component dki = g
qx(0)

ti , where the
node x identifies the attribute i. Output the decryption key as DK = {dki}i∈λ.
M = GPSW.Decrypt(CT,DK). The algorithm proceeds in a bottom-up man-
ner. For each attribute i ∈ γ ∩ λ compute e(dki, cti) = e(g, g)qx(0)·s. Then,
by polynomial interpolation at the exponent, compute e(g, g)qz(0)·s, where z is
the parent node. Proceeding in a bottom-up fashion, if the polynomial interpo-
lation is feasible at each level of the access policy up to the root ρ, we obtain

e(g, g)qρ(0)·s = e(g, g)y·s = Y s. Output the message M = ct̂
Y s if the access policy

is satisfied, ⊥ otherwise.

3.2 Proxy Re-Encryption for KP-ABE

Yu et al. [17] proposed a KP-ABE scheme (henceforth, the YWRL scheme)
which extends the GPSW one to include a key revocation mechanism. This is
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achieved by adding the features of proxy re-encryption and key update. Proxy
re-encryption allows a third party to re-encrypt ciphertexts without accessing
the content itself, thus an honest-but-curious cloud server perfectly fits this role.
The re-encryption of ciphertexts stored on the cloud server prevents a revoked
key from decrypting them. However, this mechanism alone is not sufficient:
after the re-encryption, other legitimate keys may be unable to decrypt those
ciphertext too. Hence, YWRL scheme implements also a key update mechanism
for such keys, which is operated by the cloud server. For each decryption key, the
cloud server is given all the decryption key components but one, the one related
to a special attribute (dummy attribute, AttD), which is ANDed at the root of
every access policy. The dummy attribute is also present in every ciphertext.
Without knowing the decryption key component dkAttD , the cloud server cannot
decrypt any ciphertext, but it can perform key update.

In the YWRL scheme, every attribute i, except for the dummy attribute,
is identified by a version number. The version of an attribute i is set to zero
at setup time, and it is increased by one every time the attribute is updated.
Re-encryption and key update are performed by means of re-encryption keys
issued by the key authority. A re-encryption key rki(v)↔i(v+1) is a cryptographic
quantity able to update both a ciphertext component and a decryption key
component from the version v to the version v + 1. All the re-encryption keys
for the attribute i are ordered and maintained in a dynamic structure called re-
encryption key list RKLi. When a new re-encryption key is issued, an element
containing the latest re-encryption key is appended to the re-encryption key list.
Note that the element at index v contains the re-encryption key to update either
a ciphertext component or a decryption key component from the version v − 1
to the version v. To create a new version of the attribute i(v), the key authority

updates the component of the master key t
(v)
i to t

(v+1)
i , and the component

of the public parameters T
(v)
i to T

(v+1)
i . Next, it issues a re-encryption key

rki(v)↔i(v+1) which can be used to transform either a ciphertext component

ct
(v)
i to ct

(v+1)
i or a decryption key component dk

(v)
i to dk

(v+1)
i . The scheme

allows re-encryption and key update from any old version to the latest version.
To simplify the notation, we avoid indicating the version of the attributes when
is not necessary. We will use i to indicate a generic version of the attribute, and
i′ to indicate the next version of it. The primitives of YWRL scheme have the
following syntax:
(t′i, T

′
i , rki↔i′) = YWRL.UpdateAtt(i,MK). Choose t′i uniformly at random in

Zp and compute T ′
i = gt

′
i . Then compute the re-encryption key rki↔i′ = t′i/ti.

Update the component of the master key ti to t′i, and the component of the
public parameters Ti to T ′

i . Output the re-encryption key rki↔i′ .

ct
(l)
i = YWRL.UpdateCT(i, cti, RKLi). Obtain the current version of the at-

tribute i from cti and locate the entry associated with such a version in RKLi.
If the selected entry is not the last one, retrieve all the entries from the next

one to the last one. Compute rki↔i(l) = rki↔i′ ·rki′↔i′′ · · · rki(l−1)↔i(l) = t
(l)
i /ti.

Next, compute ct
(l)
i = (cti)

rk
i↔i(l) = gt

(l)
i ·s. Output the updated ciphertext
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component ct
(l)
i .

dk
(l)
i = YWRL.UpdateDK(i, dki, RKLi). Obtain the current version of the at-

tribute i from dki and locate the entry associated with such a version in RKLi. If
the selected entry is not the last one, retrieve all the entries from the next one to

the last one. Compute rki↔i(l) = rki↔i′ · rki′↔i′′ · · · rki(l−1)↔i(l) = t
(l)
i /ti. Next,

compute dk
(l)
i = (dki)

(rk
i↔i(l)

)−1

= g

qx(0)

t
(l)
i . Output the updated decryption key

component dk
(l)
i .

The YWRL scheme is vulnerable to the revocation undoing attack, which can

be successfully executed by the cloud server. Let DK⋆ =
(︂
{dk(v)i }i∈λ, dkAttD

)︂

be a revoked key, where version v is lower than the latest version l. If the cloud

server comes into possession ofDK⋆, it can run dk
(l)
i = YWRL.UpdateDK(i, dk

(v)
i , RKLi)

on each decryption key component, thus obtaining an updated decryption key,
which is able to decrypt data again. The revocation undoing attack can be
performed on any decryption key. Notably, a new revocation of the same de-
cryption key is useless since the cloud server can use the new re-encryption keys
to perform the same attack again.

4 Proposed Scheme

Our main idea is to create a robust revocation mechanism that prevents the
honest-but-curious cloud server from being able to undo key revocations, that
is, to be resistant to the revocation undoing attack. To this aim, we use PRE
techniques and distribute the task of keys and ciphertexts update to both the
cloud server and the users. In particular, the update of either a decryption
key component or a ciphertext component to a new version is accomplished
by a double update through two different re-encryption keys, namely cloud re-
encryption key (crk) and user re-encryption key (urk). The former is available
only to the cloud server, the latter must be available only to non-revoked users.
We now introduce a mechanism to distribute it only to them.

To exclude revoked users from obtaining user re-encryption keys, we encrypt
them through GPSW encryption in such a way that only non-revoked users’ keys
are able to decrypt them. We can efficiently achieve this by means of a binary
tree structure in which an attribute is assigned to every node, except for the
root. Attributes assigned to leaf nodes are identities for current or future users,
so the number of leaves determines the maximum number of users. In every
user’s decryption key is embedded a sub-policy called update sub-policy that
is an OR between the attributes in the path of the binary tree from the leaf
corresponding to that user to its first-level ancestor (a root’s child). In the
example of Fig. 1, the update sub-policy of the decryption key of user u4 is
(x1 ORx4 ORu4). An update ciphertext containing one or more urk’s is labeled
with the minimal set of nodes covering all the non-revoked users. We call this set
NRAttrs. In the example of Fig. 1, to exclude the revoked user u4 from being
able to decrypt the update ciphertext, we encrypt the urk’s with the attributes
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in NRAttrs, i.e., {x2, x3, u3}.

user u4 update sub-policy

x2x1

x6x5x3 x4

u5u1 u7 u8u6u4u3u2

OR

u4x1 x4

urk′s

update ciphertext
{x2, x3, u3}

Figure 1: Example of binary tree used for distributing user re-encryption keys.
User u4 is revoked.

Note that none of these attributes is present in user u4’s update sub-policy,
and therefore he/she cannot decrypt the update ciphertext. Moreover, note
that every other non-revoked user has in his/her update sub-policy exactly one
attribute in common with the NRAttrs set, and therefore each of them is able
to decrypt the update ciphertext. When another user has to be revoked, we
compute a new NRAttrs set, and we encrypt the new urk’s with the attributes
in the new NRAttrs set.

In the following, we describe the system model and the assumptions, and
then we present our construction.

4.1 Model and Assumptions

Similar to [17], we assume a single entity to be responsible for key management
and data production. In other words, we assume a single data owner, which
also acts as key authority. Nevertheless, our scheme can be easily extended
to split these roles and to foresee many data owners. To do this, it suffices a
mechanism to distribute the new public parameters in authenticated fashion, as
in [6]. We thus assume that the system is composed of the following parties:
the data owner, many users, and a cloud server. In our system, the data owner
produces the data, encrypts it, and stores it on the cloud server. Users are
data consumers and hold decryption keys; they retrieve the data from the cloud
server and decrypt it. The data owner can revoke a decryption key at any
time. The cloud server is a server owned by some PaaS provider supplying
storage and computational capabilities, that runs software on behalf of the data
owner. We assume the cloud server to have generous storage space capacity and
computational resources. Moreover, we assume the cloud server can ensure high
availability and can be accessed at any time by the data owner and the users.

4.1.1 Security Model

Similarly to other works, e.g., [17, 18, 22], we assume the cloud server to be
honest but curious, meaning that it honestly carries out all its designated tasks,
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i.e., storage, communication, and computational tasks, but it is also interested
in accessing the content of the encrypted data stored on it. Also, we assume
the data owner to be fully trusted. On the contrary, we assume a user to be
interested in accessing unauthorized data. To this aim, users and/or revoked
users can collude by trying somehow to combine their decryption keys in order to
access unauthorized data that each decryption key is unable to decrypt singly.
Moreover, we assume that the data owner owns a public/private key pair to
perform digital signature algorithms, e.g., ECDSA keys, and that each user
owns a public/private key pair for asymmetric encryption, e.g., RSA keys. We
further assume secure communication channels among all the communicating
parties, which can be obtained by using some secure protocol, e.g., TLS.

4.1.2 Definitions and Notation

The data owner creates two different types of ciphertexts: (i) data cipher-
texts CTD, which are labeled with a set of encryption attributes γ and the
dummy attribute AttD, contain the actual data; and (ii) update ciphertexts

CT
(r)
U , which are labeled with the attributes in NRAttrs and used for revocation

purposes, contain the user re-encryption keys. An update ciphertext is parsed

as
(︁
ctû, {ctuk}k∈NRAttrs

)︁(r)
. The superscript notation (r) denotes a quantity

related to the r-th occurred revocation.
The universe of attributes U can be logically divided into: (i) the data sub-

universe UD that includes all the attributes used to create data ciphertext; (ii)
the update sub-universe UU that includes all the attributes associated to binary
tree nodes and used to create update ciphertexts; and (iii) the dummy attribute.

Each user is provided with a decryption key DK with an access policy T that
can be logically divided into two sub-policies as shown in Fig. 2: (i) the data
sub-policy TD that, together with the dummy attribute, authorizes the user to
decrypt data ciphertexts. It is defined over a set of attributes λ and is ANDed
with the dummy attribute; and (ii) the update sub-policy that authorizes the
user to decrypt update ciphertexts. Such a sub-policy is an OR between the
attributes in the path of the binary tree from the leaf node corresponding to
that user to its first-level ancestor.

AND

OR

AttD

update sub-policy

data sub-policy

Figure 2: Structure of an access policy in our scheme.

Each user maintains a list for each attribute i ∈ λ called URKLi (user re-
encryption key list). Each element of this list is a user re-encryption key. Sim-
ilarly, the cloud server maintains a list for each attribute i ∈ UD called CRKLi

(cloud re-encryption key list). Each element of this list is a cloud re-encryption
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key. The cloud server must not have access to the user re-encryption keys, but
it must keep track of which user re-encryption keys are contained in an update
ciphertext. To do that, the cloud server maintains a list called CTUL which
contains all the update ciphertexts. Finally, the cloud server maintains a list
for each attribute i ∈ UD called PKLi (public parameter list for the attribute i).
Each element of this list is a component of the public parameters.

The data owner maintains a local copy of CRKLi, URKLi, and PKLi for all
attributes in the data sub-universe. The data owner also maintains a binary
tree BT, a revocation list rl, and the set of attributes NRAttrs. The revocation
list contains all the leaf nodes of the binary tree that identify users which have
been revoked, as well as all the leaf nodes not yet assigned to any user. In
other words, we consider a future user that has not joined yet the system as
“revoked”. This avoids that a new user can decrypt update ciphertexts produced
before his/her joining time. To determine the NRAttrs set, we use a function
called FindSet which takes as input the binary tree and the revocation list and
outputs the minimal set of nodes NRAttrs that covers all the leaf nodes not in
the revocation list. Finally, we define a primitive called UpdateAtt which allows
us to generate cloud and user re-encryption keys.
(t′i, T

′
i , crki↔i′ , urki↔i′) = UpdateAtt(i,MK). Given an attribute i ∈ UD,

choose αi, βi uniformly at random in Zp and compute t′i = αi · βi and T ′
i = gt

′
i .

Then compute the cloud re-encryption key crki↔i′ = αi/ti and set the user
re-encryption key urki↔i′ = βi. Update the component of the master key ti
to t′i, and the component of the public parameters Ti to T ′

i . Output the cloud
re-encryption key crki↔i′ and the user re-encryption key urki↔i′ .

4.2 Procedures

In the following, we describe the procedures of our scheme, namely Setup, User
Join, Data Production, Key Revocation, and Data Consumption.
Setup. This procedure initializes the scheme. The data owner chooses a max-
imum number of users N and creates a binary tree BT of height ⌈log2(N)⌉.
Next, it chooses the universe of the attributes U = UD∪UU ∪{AttD} and assigns
each element of UU to a node of the binary tree except the root node. Then, the
data owner executes the GPSW.Setup(U) primitive which outputs the master
key MK and the public parameters PK. The data owner keeps the master key
MK secret, while it stores the public parameters PK on the cloud server. Fi-
nally, the data owner initializes a revocation list rl containing all the leaf nodes
of the binary tree.
User Join. This procedure provides a new joining user with a decryption key
DK. First, the data owner selects the left-most leaf node uk of the binary tree
not assigned to any user and removes it from the revocation list. If all the leaf
nodes have already been assigned to users, the user cannot be added to the
system. Next, it creates the update sub-policy, which is defined over the set
of attributes π from the leaf node uk to its first-level ancestor. Then, the data
owner chooses the data sub-policy TD for the user, which is defined over a set of
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attributes λ. Finally, it structures the access policy T as shown in Fig. 2, and
it executes GPSW.KeyGen(T ,MK) to create the decryption key DK.

For each i ∈ λ, the data owner computes e(dki, Ti); this result will be used
by the user to verify the correct update of decryption key components. The
data owner composes the message

(︁
{e(dki, Ti), URKLi}i∈λ , DK

)︁
, signs it, and

encrypts it with the user’s public key. Finally, it sends to the cloud server
this encrypted message together with the attributes in π and all the decryption
key components {dki}i∈λ. Note that the decryption key components related
to the dummy attribute and to the attributes in the update sub-policy are not
sent to the cloud server. Upon receiving this message, the cloud server stores
(π, {dki}i∈λ) and sends the encrypted message to the user. The user decrypts
it with his/her private key and retrieves the decryption key DK as well as
{e(dki, Ti)} and {URKLi} for all i ∈ λ.
Data Production. This procedure is executed when the data owner produces
a new data D and wants to make it available to the users. First, the data owner
signs the data D, and next, it chooses a unique data identifier DID. Then,
the data owner chooses a set of encryption attributes γ ∈ UD, and it executes
GPSW.Encrypt(D|Sign(D), γ ∪ {AttD}, PK) to generate the data ciphertext
CTD. Finally, the data owner stores the couple (DID,CTD) on the cloud server.
Key Revocation. This procedure is started by the data owner to revoke a
decryption key DK⋆ which has been compromised. The procedure is divided
into two phases. The first one is called attributes update phase and prevents
DK⋆ from decrypting ciphertexts produced after the key revocation. The second
phase is called components update phase and includes both the re-encryption of
old ciphertexts and the update of affected users’ decryption keys. While the
former phase is immediately executed after the key compromise, the latter is
distributed over time in a lazy fashion upon data requests by affected users.
The messages exchanged between the entities during attribute update phase
and data consumption procedure are depicted in Fig. 3.
Attributes Update Phase. This phase is started by the data owner to revoke
a decryption key of a user u⋆. Let DK⋆ be the decryption key to be revoked
and λ⋆ the data sub-policy attributes of such a key. The data owner selects
a minimum set of attributes µ⋆ ⊆ λ⋆ without which the data sub-policy T ⋆

D

will never be satisfied (updatee set). For each i ∈ µ⋆, the data owner executes
UpdateAtt(i,MK) and updates the component of the master key ti to t′i and
the component of the public parameters Ti to T ′

i . The primitive outputs the
cloud re-encryption key crki↔i′ and the user re-encryption key urki↔i′ . The
data owner creates an update ciphertext CT ⋆

U which contains all the user re-
encryption keys in the updatee set and cannot be decrypted by any revoked user.
To do that, the data owner first adds u⋆ to the revocation list rl and executes
FindSet(BT, rl) to obtain the new NRAttrs set; next, it signs {urki↔i′}i∈µ⋆ and
executes GPSW.Encrypt({urki↔i′}i∈µ⋆ |Sign({urki↔i′}i∈µ⋆),NRAttrs, PK). Then,
the data owner signs {T ′

i}i∈µ⋆ . Finally, it composes the message ({crki↔i′}i∈µ⋆ ,
CT ⋆

U , {T ′
i}i∈µ⋆ ,Sign({T ′

i}i∈µ⋆)) –message m1 in Fig. 3– and sends it to the cloud
server. Upon receiving the message m1 from the data owner, the cloud server
stores each quantity as last element of the related list.
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<latexit sha1_base64="3vUnL9NHLvrCpg2C/1eT/HG3nKA=">AAAB/XicbVDLSgNBEJz1GeNrfdy8DAbBU9gNiB4jevAYwTwgWcLspDcZMjuzzMwqcQn+ihcPinj1P7z5N06SPWhiQUNR1U13V5hwpo3nfTtLyyura+uFjeLm1vbOrru339AyVRTqVHKpWiHRwJmAumGGQytRQOKQQzMcXk385j0ozaS4M6MEgpj0BYsYJcZKXfewE0YaFAONr4khWD4IUF235JW9KfAi8XNSQjlqXfer05M0jUEYyonWbd9LTJARZRjlMC52Ug0JoUPSh7algsSgg2x6/RifWKWHI6lsCYOn6u+JjMRaj+LQdsbEDPS8NxH/89qpiS6CjIkkNSDobFGUcmwknkSBe0wBNXxkCaGK2VsxHRBFqLGBFW0I/vzLi6RRKftnZe+2Uqpe5nEU0BE6RqfIR+eoim5QDdURRY/oGb2iN+fJeXHenY9Z65KTzxygP3A+fwAseJUI</latexit>

Data owner
<latexit sha1_base64="q5zYihULE7tCMT4wVFmix34Riac=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXJWZguiy0o3LCvYB7VAymTttaCYZkoxQahf+ihsXirj1N9z5N6btLLT1QODknHPJzQlTzrTxvG+nsLa+sblV3C7t7O7tH7iHRy0tM0WhSSWXqhMSDZwJaBpmOHRSBSQJObTDUX3mtx9AaSbFvRmnECRkIFjMKDFW6rsnvTDWoBhoXOcyi7C92HzfLXsVbw68SvyclFGORt/96kWSZgkIQznRuut7qQkmRBlGOUxLvUxDSuiIDKBrqSAJ6GAy33+Kz60S4Vgqe4TBc/X3xIQkWo+T0CYTYoZ62ZuJ/3ndzMTXwYSJNDMg6OKhOOPYSDwrA0dMATV8bAmhitldMR0SRaixlZVsCf7yl1dJq1rxLyveXbVcu8nrKKJTdIYukI+uUA3dogZqIooe0TN6RW/Ok/PivDsfi2jByWeO0R84nz/oW5YF</latexit>

Cloud server

<latexit sha1_base64="UX9AebvvUbGdO/o/EfbOMlrtlkU=">AAAB9XicbVBNTwIxEJ3FL8Qv1KOXRmLiieySGD1ivHjExAUSWEm3zEJDt7tpuxpC+B9ePGiMV/+LN/+NBfag4Esm8/LeTDp9YSq4Nq777RTW1jc2t4rbpZ3dvf2D8uFRUyeZYuizRCSqHVKNgkv0DTcC26lCGocCW+HoZua3HlFpnsh7M04xiOlA8ogzaqz00A0jjYqjJr7tvXLFrbpzkFXi5aQCORq98le3n7AsRmmYoFp3PDc1wYQqw5nAaambaUwpG9EBdiyVNEYdTOZXT8mZVfokSpQtachc/b0xobHW4zi0kzE1Q73szcT/vE5moqtgwmWaGZRs8VCUCWISMouA9LlCZsTYEsoUt7cSNqSKMmODKtkQvOUvr5JmrepdVN27WqV+ncdRhBM4hXPw4BLqcAsN8IGBgmd4hTfnyXlx3p2PxWjByXeO4Q+czx9vw5J1</latexit>

User
<latexit sha1_base64="q5zYihULE7tCMT4wVFmix34Riac=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXJWZguiy0o3LCvYB7VAymTttaCYZkoxQahf+ihsXirj1N9z5N6btLLT1QODknHPJzQlTzrTxvG+nsLa+sblV3C7t7O7tH7iHRy0tM0WhSSWXqhMSDZwJaBpmOHRSBSQJObTDUX3mtx9AaSbFvRmnECRkIFjMKDFW6rsnvTDWoBhoXOcyi7C92HzfLXsVbw68SvyclFGORt/96kWSZgkIQznRuut7qQkmRBlGOUxLvUxDSuiIDKBrqSAJ6GAy33+Kz60S4Vgqe4TBc/X3xIQkWo+T0CYTYoZ62ZuJ/3ndzMTXwYSJNDMg6OKhOOPYSDwrA0dMATV8bAmhitldMR0SRaixlZVsCf7yl1dJq1rxLyveXbVcu8nrKKJTdIYukI+uUA3dogZqIooe0TN6RW/Ok/PivDsfi2jByWeO0R84nz/oW5YF</latexit>

Cloud server

<latexit sha1_base64="eLNOLMbNZ2vZ+oxnXJtlIjoPcFo="></latexit>

Key revocation of decryption key DK? of user u?

(attributes update phase).

<latexit sha1_base64="rxOnI1RKfCyhFJJK/arrtKctwAg=">AAACjnichVFda9swFJW9buvSbvO2x76oSwsplGAX9sHG1kJf+tixpC1EqZGV60REko10vRGMf87+0N72b6Y4GfQLdkFw7jnnovuRlUo6jOM/Qfho4/GTp5vPOlvbz1+8jF69vnBFZQUMRaEKe5VxB0oaGKJEBVelBa4zBZfZ/HSpX/4A62RhBrgoYaz51MhcCo6eSqNfe0xBjj1WCztPa9lmVk5nyK0tflJ5zUorNTSs8Spl0lCmq2vmvN4c0lO2O0iHq/SQsnqQ/it42M80x5nV9Xc5NU3vf/4D1nZysJdG3bgft0Hvg2QNumQd52n0m00KUWkwKBR3bpTEJY5rblEKBU2HVQ5KLuZ8CiMPDdfgxnW7zobue2ZC88L6Z5C27M2KmmvnFjrzzuU47q62JB/SRhXmH8e1NGWFYMTqo7xSFAu6vA2dSAsC1cIDLqz0vVIx45YL9Bfs+CUkd0e+Dy6O+sm7fvztqHvydb2OTbJD3pIeScgHckLOyDkZEhFsBUnwKfgcRuH78Et4vLKGwbrmDbkV4dlfDNjIcg==</latexit>

({crki$i0}i2µ? , CT ?
U , {T 0

i}i2µ? , Sign({T 0
i}i2µ?))

<latexit sha1_base64="7C/JK1OJftbI6F1xGjle9FV7duU=">AAACynichZHditQwFMfT+rHr+jXqpTfBWaEFGdoVWa9kwRsvBFfc2R2Z1JJm0jZOkpYkFUrInW/mU/gWPoJpp6C7K3gg4c/v/E+Sc1K0nGmTJD+D8MbNW7f39u8c3L13/8HD2aPH57rpFKFL0vBGrQqsKWeSLg0znK5aRbEoOL0otm+H/MU3qjRr5JnpW5oJXElWMoKNR/nsxyHitDQwQhZtGmOJcfnXLzbisUPuBZzoZuty9od6DCOIajz4Ow/8nm9h7B0qHqvgmfejVjFBIXK5ZRAxCZHodpbBI7CplbCfWCVd9P+KeKRqR1XdOL+zqjYwPsxn82SRjAGvi3QSczDFaT775bsinaDSEI61XqdJazKLlWGEU3eAOk1bTLa4omsvJRZUZ3YctoPPPdnAslF+SQNH+neFxULrXhTeObSor+YG+K/cujPl68wy2XaGSrK7qOw4NA0cfg5umKLE8N4LTBTzb4WkxgoT4//30kn4ZYtbqjJb0UZQo3rnR5ReHch1cX60SF8tko9H85M307D2wVPwDEQgBcfgBLwDp2AJSBAHH4JV8Dl8H6qwD+3OGgZTzRNwKcLvvwGsCN1R</latexit>⇣
{ċt

(l)
j }, {ḋk

(l)

i }, {( ˆctu, ctuk)(r), {T 0
i}i2µ(r) , Sign({T 0

i}i2µ(r))}r2⇢

⌘

<latexit sha1_base64="7BpmL+dowxwynGvWxu0iVqO7pGY=">AAACF3icbVDLSgMxFM34rPVVdekm2AotSJkpiK6k4MZlBfuAzjhk0kwbm3mQ3BHKMH/hxl9x40IRt7rzb0wfgrYeCJx7zr3c3OPFgiswzS9jaXlldW09t5Hf3Nre2S3s7bdUlEjKmjQSkex4RDHBQ9YEDoJ1YslI4AnW9oaXY799z6TiUXgDo5g5AemH3OeUgJbcQrVkC+ZDGdtpb+jy27QsKpmdneiagnv3U9uS9wdQKbmFolk1J8CLxJqRIpqh4RY+7V5Ek4CFQAVRqmuZMTgpkcCpYFneThSLCR2SPutqGpKAKSed3JXhY630sB9J/ULAE/X3REoCpUaBpzsDAgM1743F/7xuAv65k/IwToCFdLrITwSGCI9Dwj0uGQUx0oRQyfVfMR0QSSjoKPM6BGv+5EXSqlWt06p5XSvWL2Zx5NAhOkJlZKEzVEdXqIGaiKIH9IRe0KvxaDwbb8b7tHXJmM0coD8wPr4BQQGeuA==</latexit>⇣
{dk

(l)
i }, {ct

(l)
j }

⌘

<latexit sha1_base64="E3F6rH9bwoLy6Co3NQ4go8Hy+cA="></latexit>�
ĉt, {ctm}m2(�\�)\�

�

<latexit sha1_base64="sISrfKVXKn9TgR0Fb1eLmuYKqIM=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69pLaCp5IURE9SsAe9VbAf0oSy2W7apbubsLsRSuiv8OJBEa/+HG/+G7dtDtr6YODx3gwz84KYUaUd59vKra1vbG7ltws7u3v7B8XDo7aKEolJC0cskt0AKcKoIC1NNSPdWBLEA0Y6wfhm5neeiFQ0Eg96EhOfo6GgIcVIG+mx0vBKd16pUekXy07VmcNeJW5GypCh2S9+eYMIJ5wIjRlSquc6sfZTJDXFjEwLXqJIjPAYDUnPUIE4UX46P3hqnxllYIeRNCW0PVd/T6SIKzXhgenkSI/UsjcT//N6iQ6v/JSKONFE4MWiMGG2juzZ9/aASoI1mxiCsKTmVhuPkERYm4wKJgR3+eVV0q5V3Yuqc18r16+zOPJwAqdwDi5cQh1uoQktwMDhGV7hzZLWi/VufSxac1Y2cwx/YH3+AIS+juU=</latexit>

DID

<latexit sha1_base64="ZpKffvxOLRY+8X/KOvdiItRGPhA=">AAACKnicbVDLahsxFNW4ryR9xEmX2YiYQldmxqU0y5R0kWUK8QPsIdyRr21hvZDuhJjBH5B/CXTb/kZ3odt+QD+hGseLJM4BweGcc6+kUzglA6XpbdJ49vzFy1db2zuv37x9t9vc2+8FW3qBXWGV9YMCAippsEuSFA6cR9CFwn4xP6n9/iX6IK05p4XDXMPUyIkUQFG6aLZGhFcURPUNCLiwJpTa1RZ33goclx6XMZW20xX4JsnWpMXWOLto/huNrSg1GhIKQhhmqaO8Ak9SKFzujMqADsQcpjiM1IDGkFerzyz5h6iM+cT6eAzxlXp/ogIdwkIXMamBZuGxV4tPecOSJkd5JY0rCY24u2hSKk6W183wsfQoSC0iAeFlfCsXM/AgKPb3YBN8cuDQ59UUrUbyi7qi7HEhm6TXaWef2+n3Tuv467qsLXbADtlHlrEv7JidsjPWZYJdsx/sJ/uV3CS/k9vkz120kaxn3rMHSP7+BzJfqSw=</latexit>

Data consumption procedure

<latexit sha1_base64="pfG5RnAWAuj34YsYlMILnCjpGvk=">AAACC3icbVDLSgMxFM3UV62vqks3g63gqsxURHFVceOygq2FdiiZ9E4bm2RCkhGGoZ8guNXfcCdu/Qj/wk8wfSxs64ELh3PuTe49oWRUG8/7dnIrq2vrG/nNwtb2zu5ecf+gqeNEEWiQmMWqFWINjApoGGoYtKQCzEMGD+HwZuw/PIHSNBb3JpUQcNwXNKIEGys1y7zrX5W7xZJX8SZwl4k/IyU0Q71b/On0YpJwEIYwrHXb96QJMqwMJQxGhU6iQWIyxH1oWyowBx1kk21H7olVem4UK1vCuBP170SGudYpD20nx2agF72x+J/XTkx0GWRUyMSAINOPooS5JnbHp7s9qoAYllqCiaJ2V5cMsMLE2IDmXsJnEktQQdaHmINR6chG5C8Gskya1Yp/XvHuqqXa9SysPDpCx+gU+egC1dAtqqMGIugRvaBX9OY8O+/Oh/M5bc05s5lDNAfn6xfXbZsn</latexit>m1 :

<latexit sha1_base64="NUyZpc6ydEqKIt77ObcZt9iMpNI=">AAACC3icbVDLSgMxFM3UV62vqks3g63gqsxURHFVceOygq2FdiiZ9E4bm2RCkhGGoZ8guNXfcCdu/Qj/wk8wfSxs64ELh3PuTe49oWRUG8/7dnIrq2vrG/nNwtb2zu5ecf+gqeNEEWiQmMWqFWINjApoGGoYtKQCzEMGD+HwZuw/PIHSNBb3JpUQcNwXNKIEGys1y7xbvSp3iyWv4k3gLhN/Rkpohnq3+NPpxSThIAxhWOu270kTZFgZShiMCp1Eg8RkiPvQtlRgDjrIJtuO3BOr9NwoVraEcSfq34kMc61THtpOjs1AL3pj8T+vnZjoMsiokIkBQaYfRQlzTeyOT3d7VAExLLUEE0Xtri4ZYIWJsQHNvYTPJJaggqwPMQej0pGNyF8MZJk0qxX/vOLdVUu161lYeXSEjtEp8tEFqqFbVEcNRNAjekGv6M15dt6dD+dz2ppzZjOHaA7O1y/ZEZso</latexit>m2 :

<latexit sha1_base64="GxV3mTYg8lQuXmqdewQXCUV5Gqo=">AAACC3icbVDLSgMxFM3UV62vqks3wVZwVWZaRHFVceOygn1AO5RMeqeNTWaGJCMMQz9BcKu/4U7c+hH+hZ9g2s7Cth64cDjn3uTe40WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVQYSwpNGvJQdjyigLMAmpppDp1IAhEeh7Y3vp367SeQioXBg04icAUZBsxnlGgjtcqiX7su94slu2LPgFeJk5ESytDoF396g5DGAgJNOVGq69iRdlMiNaMcJoVerCAidEyG0DU0IAKUm862neAzowywH0pTgcYz9e9ESoRSifBMpyB6pJa9qfif1421f+WmLIhiDQGdf+THHOsQT0/HAyaBap4YQqhkZldMR0QSqk1ACy+RWkQikG46hFCAlsnEROQsB7JKWtWKc1Gx76ul+k0WVh6doFN0jhx0ieroDjVQE1H0iF7QK3qznq1368P6nLfmrGzmGC3A+voF2rWbKQ==</latexit>m3 :

<latexit sha1_base64="m9g7ghD7u/wtDs9DczCVdb0zonk=">AAACC3icbVDLSgMxFM3UV62vqks3g63gqsxURXFVceOygn1AO5RMeqeNTSZDkhGGoZ8guNXfcCdu/Qj/wk8wbWdhWw9cOJxzb3Lv8SNGlXacbyu3srq2vpHfLGxt7+zuFfcPmkrEkkCDCCZk28cKGA2hoalm0I4kYO4zaPmj24nfegKpqAgfdBKBx/EgpAElWBupWea98+tyr1hyKs4U9jJxM1JCGeq94k+3L0jMIdSEYaU6rhNpL8VSU8JgXOjGCiJMRngAHUNDzEF56XTbsX1ilL4dCGkq1PZU/TuRYq5Uwn3TybEeqkVvIv7ndWIdXHkpDaNYQ0hmHwUxs7WwJ6fbfSqBaJYYgomkZlebDLHERJuA5l7CZxGOQHrpAAQHLZOxichdDGSZNKsV96Li3FdLtZssrDw6QsfoFLnoEtXQHaqjBiLoEb2gV/RmPVvv1of1OWvNWdnMIZqD9fUL3FmbKg==</latexit>m4 :

<latexit sha1_base64="0VJx/JhhnfaaUF1w2uuVOQGxreo=">AAACC3icbVDLSgMxFM3UV62vqks3wVZwVWYqRXFVceOygn1AO5RMeqeNTWaGJCMMQz9BcKu/4U7c+hH+hZ9g2s7Cth64cDjn3uTe40WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVQYSwpNGvJQdjyigLMAmpppDp1IAhEeh7Y3vp367SeQioXBg04icAUZBsxnlGgjtcqiX7su94slu2LPgFeJk5ESytDoF396g5DGAgJNOVGq69iRdlMiNaMcJoVerCAidEyG0DU0IAKUm862neAzowywH0pTgcYz9e9ESoRSifBMpyB6pJa9qfif1421f+WmLIhiDQGdf+THHOsQT0/HAyaBap4YQqhkZldMR0QSqk1ACy+Ri4hEIN10CKEALZOJichZDmSVtKoVp1ax76ul+k0WVh6doFN0jhx0ieroDjVQE1H0iF7QK3qznq1368P6nLfmrGzmGC3A+voF3f2bKw==</latexit>m5 :

Figure 3: Messages exchanged during attribute update phase and data con-
sumption procedure. Components update phase (dashed arrows) is executed
only if ciphertext or decryption key components are outdated.

Components Update Phase. This phase is executed during each data con-
sumption procedure. Let a data ciphertext requested by a legitimate user be
CTD and its identifier be DID, and let the decryption key of such user be
DK. During this phase, the cloud server updates the decryption key com-
ponents of DK and the ciphertext components of CTD as follows. For each
i ∈ λ ∩ γ, the cloud server first determines whether the decryption key compo-
nent and/or the ciphertext component are outdated by checking their version
against the latest one. For each outdated attribute i ∈ λ, the cloud server exe-
cutes YWRL.UpdateDK(i, dki, CRKLi) to obtain a partially updated decryption

key component dk̇
(l)

i . For each outdated attribute j ∈ σ ⊆ λ∩γ, the cloud server
executes YWRL.UpdateCT(j, ctj , CRKLj) to obtain a partially updated cipher-

text component cṫ
(l)
j .

Data Consumption. This procedure is started by a user who wants to access
a piece of data. To this aim, the user requests a data ciphertext to the cloud
server by specifying the data identifierDID (messagem2). First, the cloud server
retrieves the couple (DID,CTD) and executes the components update phase, thus
obtaining the partially updated decryption key components and the partially
updated ciphertext components. Next, it determines the set of key revocations
ρ –occurred since the user’s last data consumption execution– in which he/she
was an affected user. Then, for each revocation r ∈ ρ, the cloud server retrieves

the update ciphertext CT
(r)
U from CTUL, parses it as

(︁
ctû, {ctuk}k∈NRAttrs

)︁(r)
,

and selects only the ciphertext component ctuk | k ∈ π ∩NRAttrs. Finally, the

cloud server sends the message m3 ({cṫ(l)j }, {dk̇
(l)

i }, {(ctû, ctuk)
(r), {T ′

i}i∈µ(r) ,
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Sign({T ′
i}i∈µ(r))}r∈ρ) to the user, where i refers to outdated attributes in the

decryption key, and j refers to outdated attributes in the data ciphertext and
present in the decryption key, i.e., j ∈ σ. Note that the cloud server sends only
the ciphertext component corresponding to an attribute that is present in the
update sub-policy of the decryption key. This optimization saves communication
overhead.

Upon receiving the message m3 from the cloud server, for each r ∈ ρ, the
user verifies the data owner’s signature on the public key components, executes
GPSW.Decrypt((ctû, ctuk)

(r), DK), thus retrieving the user re-encryption keys
{urki↔i′}i∈µ(r) and the signature on them. The user verifies the signature and
appends each urki↔i′ | i ∈ λ to the related URKLi. When the user re-encryption
key list URKLi is updated to the last version, the user selects it together with

the received partially updated decryption key component dk̇
(l)

i , and executes

YWRL.UpdateDK(i, dk̇
(l)

i , URKLi), thus obtaining the updated decryption key

component dk
(l)
i . The user verifies that the update of the decryption key compo-

nents has been performed correctly by checking that e (dki, Ti) = e
(︂
dk

(l)
i , T

(l)
i

)︂
.

In addition, for each attribute j, the user selects the user re-encryption key

list URKLj and the received partially updated ciphertext component cṫ
(l)
j , and

executes YWRL.UpdateCT(j, cṫ
(l)
j , URKLj), thus obtaining the updated cipher-

text component ct
(l)
j . Then, the user composes and sends the message m4(︂

{dk(l)i }, {ct
(l)
j }

)︂
to the cloud server.

Upon receiving the message m4 from the user, the cloud server verifies that
each ciphertext component ctj has been correctly updated by the user. To

do that, the cloud server checks that e
(︂
ctj , T

(l)
j

)︂
= e

(︂
ct

(l)
j , Tj

)︂
. If all the

comparisons are correct, the cloud server updates the data ciphertext CTD with

the ciphertext components {ct(l)j }j∈σ, and the decryption key components for
the user with the received ones. Then, the cloud server composes the message
m5

(︁
ct̂, {ctm}m∈(λ∩γ)\σ

)︁
and sends it to the user. Note that the cloud server

sends only the ciphertext components that were already up to date and present
in the user’s decryption key. This optimization saves communication overhead.

Upon receiving the message m5 from the cloud server, the user composes

the data ciphertext CTD = (ct̂, {ct(l)j }j∈{λ∩γ}) and decrypts it by executing
GPSW.Decrypt(CTD, DK), thus retrieving the data D and the signature on it.
Finally, the user verifies the signature, and, if everything is correct, accepts the
message.

5 Security Analysis

In this section, we provide security proofs for our scheme. Our aim is to show
that our scheme is not less secure than Goyal et al. [12] scheme (GPSW scheme),
which has been proved secure in the Selective-Set model under the Decisional
Bilinear Diffie-Hellman (DBDH) assumption. We first define a game (Game 1)
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which models a chosen-plaintext attack by a group composed of (i) colluding
users whose keys cannot decrypt a given ciphertext and (ii) colluding users
whose keys have been revoked. We formally prove that our scheme is resis-
tant against such an adversary under the DBDH assumption. Then, we define
a second game (Game 2) which models a chosen-plaintext attack by a cloud
server that comes into possession of any quantity of revoked keys. We formally
prove that our scheme is resistant against such an adversary under the DBDH
assumption. Note that, in order to achieve chosen-ciphertext security, we can
apply an efficient random oracle technique such as the Fujisaki-Okamoto trans-
formation [31].

Game 1

Init The adversary declares the universe of attributes U = UD ∪UU ∪ {AttD},
the challenge set Γ = γ∪{AttD} with γ ⊆ UD, the number of key revocations n,

and the data sub-policies of the decryption keys to revoke, i.e., T (j)
D ,∀j ∈ [1, n].

For each key revocation, the adversary also chooses an attribute ui ∈ UU , which
is the identity of the user to revoke.
Setup The challenger creates a binary tree BT with the attributes in UU ,
and it runs the GPSW.Setup primitive, thus creating the public parameters
PK0. Next, for each key revocation j, the challenger determines the upda-

tee set µj from T (j)
D and runs the UpdateAtt primitive for each attribute

i ∈ µj , thus creating the user re-encryption keys {urki(j−1)↔i(j)}i∈µj . Then,
the challenger creates the public parameters PKj , determines the NRAttrs
set, and encrypts the user re-encryption keys in the updatee set by executing
GPSW.Encrypt({urki(j−1)↔i(j)}i∈µj

,NRAttrs, PKj). Finally, the challenger gives
the n + 1 sets of the public parameters, i.e., {PK0, . . . , PKn}, and the update
ciphertexts to the adversary.
Phase 1 The adversary is allowed to issue queries for: (i) decryption keys of
any version whose access policy TD is not satisfied by the challenge set; and (ii)

decryption keys with data sub-policy equal to any T (j)
D , but version less than j.

The version v ∈ [0, n] specifies which master key the challenger uses to create
the decryption key requested.
Challenge The adversary submits two distinct messages m0 and m1 of
equal length. The challenger sets b ← {0, 1} uniformly at random, runs the
GPSW.Encrypt primitive on mb with the challenge set, and sends the cipher-
text CT ⋆ to the adversary.
Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b⋆ of b.

The advantage of an adversary A in this game is defined as Pr[b⋆ = b]− 1
2 .

Proof of Security

We prove that no Probabilistic Polynomial-Time (PPT) adversary can play
Game 1 against our scheme with a non-negligible advantage under the DBDH
assumption. To do this, we prove that breaking our scheme reduces to breaking
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the GPSW scheme, which in turn is proved to be infeasible for a PPT adversary
(see [12]). More formally, we state the following:

Theorem 1. If a PPT adversary can play Game 1 against our scheme with a
non-negligible advantage, then a simulator can be built to play the Selective-Set
game (Game 0) against the GPSW scheme with the same advantage.

Proof. Suppose there exists a PPT adversary A able to win Game 1 against our
scheme with advantage ϵ. We build a simulator B that plays Game 0 against
the GPSW scheme with the same advantage ϵ.
Init The simulator B starts Game 1 against the adversary A. A chooses the
universe of attributes U , the challenge set Γ = γ ∪ {AttD} with γ ⊆ UD, the
number of key revocations n, the data sub-policies of the decryption keys to

revoke, i.e., T (j)
D ,∀j ∈ [1, n], and for each key revocation the identity ui ∈ UU of

the user to revoke.
Setup In this phase, the simulator B builds an alternative universe of at-
tributes U ′ and an alternative challenge set Γ′, which will be used in Game 0
against the GPSW scheme. The alternative universe will be composed of an
attribute i 0 for each attribute i in the original universe, plus an attribute i j
for each attribute i in the updatee set of each key revocation j. In formulas:
U ′ = {i 0 | i ∈ U}∪{i j | i ∈ µj ,∀j ∈ [1, n]} . Note that the alternative universe
contains the all the attributes in UU and the dummy attribute AttD. Since these
attributes are not subject to versioning and are never included in an updatee
set, the alternative universe contains only one version of them, i.e., i 0.

To simplify the creation of the alternative challenge set, we define the fol-
lowing function:
i x ← FindCurrVer(i,U ′, v) This function takes as input an attribute named
i ∈ U , the universe of attributes U ′, and a version number v. The function
outputs the attribute i x, where x = maxx≤v{x | i x ∈ U ′}.

The alternative challenge set will be composed of the outputs of FindCurrVer(i,U ′, n)
for each attribute i in the original challenge set. In formulas: Γ′ = {FindCurrVer(i,
U ′, n) | i ∈ Γ}. The simulator B, which acts as adversary in Game 0, selects the
universe of attributes U ′ and the challenge set Γ′, and runs Game 0 Init phase.
The challenger replies with the public parameters PK ′ = {Ti v | i v ∈ U ′}. The
simulator creates the n+ 1 sets of public parameters {PK0, . . . , PKn} for A as
follows: it sets PK0 = {Ti 0 | i ∈ U}; next, for j ∈ [1, n], it sets PKj = {Ti j ∈
PKj−1 | i /∈ µj} ∪ {Ti j ∈ PK ′ | i ∈ µj}. For each key revocation j, the simula-
tor B selects the identity corresponding to they key to be revoked and adds it
to the revocation list rl. Then, it executes FindSet(BT, rl) thus retrieving the
new NRAttrs set, selects |µj | random elements in Zp as the user re-encryption
keys, and executes GPSW.Encrypt({urki(j−1)↔i(j)}i∈µj

,NRAttrs, PKj) to cre-
ate the update ciphertexts. Finally, the simulator B gives the n+1 sets of public
parameters and the update ciphertexts to the adversary A.
Phase 1 For each user ui’s decryption key with data sub-policy TD of version
v that the adversary A requests, the simulator B first determines the update
sub-policy by ORing the attributes in the path of the binary tree from the leaf
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corresponding to the user ui to its first-level ancestor. Then, the simulator
computes the corresponding policy T ′ in the alternative universe by replacing
each attribute i ∈ T with the attribute i x← FindCurrVer(i,U ′, v). Finally, the
simulator makes a decryption key request to the GPSW scheme and forwards
the obtained decryption key to the adversary A.
Challenge The simulator B receives the messages m0 and m1 from the adver-
sary A, selects them as its own challenge messages with respect to the GPSW
scheme, and runs Game 0 Challenge phase. The simulator propagates the ob-
tained ciphertext CT ⋆ to the adversary A.
Phase 2 The simulator acts as it did in Phase 1.
Guess The simulator B receives the guess b⋆ from the adversary A and selects
it as its own guess with respect to the GPSW scheme.

As shown, the simulator can map any attribute of any version of our scheme
onto an attribute of the GPSW scheme, and therefore it can simulate the ver-
sioning of the attributes with the adversary A. The simulator translates the
attributes from the universe U to U ′ and maps each decryption key request
from A to an equivalent request compliant with the GPSW scheme. Note that
the decryption keys, as well as all the other quantities, returned by the sim-
ulator are indistinguishable from those generated by our scheme. Hence, the
advantage of the simulator B in Game 0, i.e., in the Selective-Set game, against
the GPSW scheme is the same as the one of the adversary A in Game 1 against
our scheme. ■

Game 2

Init The adversary declares the universe of attributes U = UD ∪UU ∪ {AttD},
the challenge set Γ = γ∪{AttD} with γ ⊆ UD, the number of key revocations n,

and the data sub-policies of the decryption keys to revoke, i.e., T (j)
D ,∀j ∈ [1, n].

For each key revocation, the adversary also chooses an attribute ui ∈ UU , which
is the identity of the user to revoke. Note that the universe of attributes, the
challenge set, and the access policies include the dummy attribute AttD.
Setup The challenger creates a binary tree BT with the attributes in UU ,
and it runs the GPSW.Setup primitive, thus creating the public parameters
PK0. Next, for each key revocation j, the challenger determines the updatee

set µj from T (j)
D and runs the UpdateAtt primitive for each attribute i ∈ µj , thus

creating the cloud re-encryption keys {crki(j−1)↔i(j)} and the user re-encryption
keys {crki(j−1)↔i(j)}. Then, the challenger creates the public parameters PKj ,
determines the NRAttrs set, and encrypts the user re-encryption keys in the
updatee set by executing GPSW.Encrypt({urki(j−1)↔i(j)}i∈µj

,NRAttrs, PKj).
Finally, the challenger gives the n + 1 sets of the public parameters, the cloud
re-encryption keys, and the update ciphertexts to the adversary.
Phase 1 The adversary is allowed to issue queries for: (i) incomplete decryp-
tion keys, i.e., decryption keys which do not include the decryption key com-
ponent relative to the update sub-policy and to the dummy attribute (dkAttD );

and (ii) decryption keys with data sub-policy equal to any T (j)
D , but version less
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than j.
Challenge The adversary submits two distinct messages m0 and m1 of
equal length. The challenger sets b ← {0, 1} uniformly at random, runs the
GPSW.Encrypt primitive on mb with the challenge set, and sends the cipher-
text CT ⋆ to the adversary.
Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b⋆ of b.

The advantage of an adversary A in this game is defined as Pr[b⋆ = b]− 1
2 .

Proof of Security

We prove that no PPT adversary can play Game 2 against our scheme with a
non-negligible advantage under the DBDH assumption. To do this, we prove
that breaking our scheme with Game 2 rules reduces to breaking our scheme
with Game 1 rules, which we just proved to be infeasible for a PPT adversary
(see Theorem 1). More formally, we state the following:

Theorem 2. If a PPT adversary can play Game 2 against our scheme with a
non-negligible advantage, then a simulator can be built to play Game 1 against
our scheme with the same advantage.

Proof. Suppose there exists a PPT adversary A able to win Game 2 against our
scheme with advantage ϵ. We build a simulator B that plays Game 1 against
our scheme with the same advantage ϵ.
Init The simulator B starts Game 2 against the adversary A. A chooses the
universe of attributes U which includes the dummy attribute AttD, the challenge
set Γ = γ ∪ {AttD} with γ ⊆ UD, the number of key revocations n, the data

sub-policies of the decryption keys to revoke, i.e., T (j)
D ,∀j ∈ [1, n], and for each

key revocation the identity ui ∈ UU of the user to revoke.
Setup In this phase, the simulator B adds another dummy attribute Att′D to

the universe of attributes, selects Γ as its challenge set, T (j)
D ,∀j ∈ [1, n] as the

access policies of the decryption keys to revoke, and runs Game 1 Init phase.
The challenger replies with the sets of public parameters {PK0, . . . , PKn} and
the update ciphertexts. The simulator removes the component of the public
parameters relative to the dummy attribute Att′D in every set of public param-
eters. Then, it chooses

∑︁
j | µj | random numbers in Zp to create all the cloud

re-encryption keys. Finally, the simulator gives the n+1 sets of public parame-
ters, the cloud re-encryption keys, and the update ciphertexts to the adversary
A.
Phase 1 For each revoked decryption key with data sub-policy T (j)

D and
version v < j that the adversary A requests, the simulator B makes a decryption
key request to the Game 1 challenger and forwards the obtained decryption key
to the adversary.

For each incomplete decryption key with policy TD and version v that the
adversary A requests, the simulator substitutes the dummy attribute AttD with
the new dummy attribute Att′D and makes a decryption key request to the
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Game 1 challenger. Then, the simulator removes the component dkAtt′D
and the

components relative to the update sub-policy from the obtained decryption key
and sends such an incomplete decryption key to the adversary.
Challenge The simulator B receives the messages m0 and m1 from the adver-
sary A, selects them as its own challenge messages and runs Game 1 Challenge
phase. The simulator propagates the obtained ciphertext CT ⋆ to the adversary
A.
Phase 2 Phase 1 is repeated.
Guess The simulator B receives the guess b⋆ from the adversary A, selects it
as its own guess, and runs Game 1 Guess phase.

As shown, the simulator can accommodate every decryption key request
from the adversary. Notably, the simulator is able to provide the adversary
with any incomplete decryption key. Indeed, during Phase 1, it may happen
that the adversary requests incomplete decryption keys relative to decryption
keys whose access policy is satisfied by the challenge set. In such a case, by
substituting AttD with Att′D, the simulator ensures that the access policy is not
satisfied by the challenge set and that the request will be compliant with those
accepted by the Game 1 challenger. Note that the decryption keys, as well as
all the other quantities, returned by the simulator are indistinguishable from
those generated by our scheme. Therefore, the advantage of the simulator B in
Game 1 against our scheme is the same as the one of the adversary A in Game 2
against our scheme. ■

6 Performance Evaluation

6.1 Cost Analysis

In this section, we compare in detail our scheme against the YWRL scheme.
We first analyze the computational cost of the various procedures in terms of
pairing-based operations, namely (i) operation in G1 (i.e., point-scalar multi-
plication), (ii) operation in GT (i.e., modular exponentiation), and (iii) bilinear
pairing. Table 2 shows the complexity of the various procedures executed by
each entity in both schemes. The cost of the user join procedure for the data
owner is slightly higher in our scheme than in the YWRL scheme, namely, |λ|
pairings. This is necessary to allow the user to verify that the cloud server
partially updated his/her key correctly. Notably, the computational cost of the
data production procedure, which is the most frequently executed by the data
owner, is the same both in the YWRL scheme and in ours. As for the cloud
server, the additional computational cost in our scheme is at most |γ| pairings
during the data consumption procedure. This is necessary to verify that the
user updated the ciphertext correctly. As for the user, the additional computa-
tional cost in our scheme is only present in case of components update. In such
a case, the additional cost is due to the decryption of the update ciphertexts
(|ρ| pairings and |ρ| operations in GT ) and to the update of decryption key and
ciphertext (up to |λ| + |γ| operations in G1). Considering that key revocation

19



Data owner

Procedure Scheme
Bilinear Operations Operations
Pairings in G1 in GT

Setup
Our 1 |UD|+ 1 −
YWRL 1 |UD|+ |UU |+ 1 −

User Join
Our |λ| |λ|+ |π| −
YWRL − |λ|+ 1 −

Data Production
Our − |γ|+ 1 1
YWRL − |γ|+ 1 1

Key Revocation
Our − |µ|+ |NRAttrs| 1
YWRL − |µ| −

Cloud server

Procedure Scheme
Bilinear Operations Operations
Pairings in G1 in GT

Data Consumption
Our 2|γ| |λ|+ |γ| −

(with components update) YWRL − |λ|+ |γ| −

User

Procedure Scheme
Bilinear Operations Operations
Pairings in G1 in GT

Data Consumption
Our |λ|+ 1 − |λ|+ 1

(without components update) YWRL |λ|+ 1 − |λ|+ 1

Data Consumption
Our 2|λ|+ |ρ|+ 1 |λ|+ |γ| |λ|+ |ρ|+ 1

(with components update) YWRL 2|λ|+ 1 − |λ|+ 1

Table 2: Computational costs comparison.

is a far less frequent event than data consumption and data production, and
considering also that only a portion of users is affected by a key revocation,
the additional cost introduced by our scheme should be acceptable in order to
provide the additional security properties.

Table 3 shows a comparison of the size of the cryptographic information held
by each entity. Symbols |G1|, |GT |, and |Zp| refer to the size in bit of a G1,
a GT , and a Zp element, respectively. “Yes” means that the entity stores the
whole information and “No” means that it does not store the information. The
size is specified if the entity stores only a portion of such information. We note
that, in terms of storage, the schemes are similar. The additional storage cost
for the user in our scheme is due to the update sub-policy in the decryption key
and to the user re-encryption keys. As for the data owner, the additional cost is
due to the attributes of the update sub-universe and to the user re-encryption
keys.

Table 4 shows a comparison of the communication cost for key revocation
and data consumption procedures. The additional cost of message m1 is all
due to the update ciphertext. However, the major communication cost of our
scheme is introduced with messages m3 and m4, when the cloud server sends
the user the update ciphertext containing the user re-encryption keys, and the
user replies with the updated ciphertext components.
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Scheme Size
Data Cloud

User
owner server

PK
Our (|UD|+ |UU |+ 1)|G1|+ |GT | Yes |UD||G1| |λ||G1|
YWRL (|UD|+ 1)|G1|+ |GT | Yes |UD||G1| |λ||G1|

MK
Our (|UD|+ |UU |+ 2)|Zp| Yes No No
YWRL (|UD|+ 2)|Zp| Yes No No

DK
Our (|λ|+ 1 + |π|)|G1| No |λ||G1| Yes
YWRL (|λ|+ 1)|G1| No |λ||G1| Yes

CTD
Our (|γ|+ 1)|G1|+ |GT | No Yes No
YWRL (|γ|+ 1)|G1|+ |GT | No Yes No

CTU
Our (|NRAttrs|+ 1)|G1|+ |GT | No Yes No
YWRL − − − −

crki↔i′
Our |Zp| Yes Yes No
YWRL |Zp| Yes Yes No

urki↔i′
Our |Zp| Yes No Yes
YWRL − − − −

Table 3: Storage costs comparison.

Message Scheme Message size

m1
Our 2|µ||Zp|+ (|µ|+ |NRAttrs|)|G1|+ |GT |
YWRL |µ||Zp|+ |µ||G1|

m3 +m5
Our (2|λ|+ |γ|+ 1 + |ρ|)|G1|+ (|ρ|+ 1)|GT |+ |ρ||µ||Zp|
YWRL (2|λ|+ |γ|+ 1)|G1|+ |GT |

m4
Our (|λ|+ |γ|)|G1|
YWRL −

m5
Our (|γ|+ 1)|G1|+ |GT |
YWRL (|γ|+ 1)|G1|+ |GT |

Table 4: Communication cost comparison of key revocation and data consump-
tion procedures. Messages refer to Fig. 3.

6.2 Performance Evaluation by Simulation

In this section, we evaluate the performance of the YWRL scheme and ours by
simulating them. The aim is to practically understand the price of the addi-
tional security provided by our scheme. We developed a Matlab simulator that
simulates a data owner, a cloud server, and a number of users that perform the
math operations of the two schemes for a period of time. User join, data pro-
duction, key revocation, and data consumption events are generated randomly.
The simulator does not actually perform the math operations, but rather it
keeps track of the type and the number of operations that a real system should
perform. Such operations include operations in G1, operations in GT , and bilin-
ear pairings, as well as the other cryptographic operations, namely, signature,
signature verification, asymmetric encryption, and asymmetric decryption. The
simulator also simulates the messages exchanged between the entities, and it
keeps track of the total traffic in bytes, both in upload and download for each
entity in the system. For the data ciphertexts, only the encryption overhead is
considered, that is the size of the ciphertext size minus the size of the actual
(in-the-clear) data. By doing this, the simulator actually measures the com-
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putational and traffic costs with respect to a “baseline” insecure system that
always stores and transmits data in the clear.

The simulator initializes the YWRL scheme with a universe of |UD| + 1 at-
tributes, and our scheme with a universe of |UD| + |UU | + 1 attributes. The
version of each attribute subject to versioning is initially set to 0. Then,
the simulator generates nInitUsers users as follows. A data sub-policy with
nKeyAttrs randomly chosen attributes from the data sub-universe is assigned
to each user. The version of each decryption key component is initially set to
0. The data sub-policy is defined as a disjunctive normal form (DNF), i.e., an
OR of AND gates. The OR gate is the root of the data sub-policy and has
⌊nKeyAttrs/⌊√nKeyAttrs⌋⌋ child nodes. Each child node is an AND gate with
nKeyAttrs− (⌊nKeyAttrs/⌊√nKeyAttrs⌋⌋−1) · ⌊√nKeyAttrs⌋ child nodes. In
this way, we obtain a data sub-policy with approximately the same number of
AND gates and children for each AND gate. For example, with nKeyAttrs = 10,
we obtain a data sub-policy with 3 AND gates, with 3, 3, and 4 children, re-
spectively. Fig. 4 shows an example of access policy of our scheme.

data sub-policy

AND

OR

AttD

OR

AND AND AND

Att3 Att52Att21Att95 Att9Att77 Att46Att58 Att61 Att74

OR

u10 x5x2

update sub-policy

Figure 4: Example of access policy in our simulated scheme. The data sub-
policy is in DNF and is composed of nKeyAttrs = 10 attributes.

Finally, the simulator generates an initial database of nInitCtxs data cipher-
texts. Each data ciphertext is labeled with nCtxAttrs randomly chosen at-
tributes from the data sub-universe, plus the dummy attribute. The version of
each ciphertext component is initially set to 0.

After these preliminary operations, the simulator starts generating the events
and starts recording the math operations and the traffic overhead. The simulator
models the user join, data production, key revocation, and data consumption
events as Poisson processes with different mean times, namely, UJMeantime,
DPMeantime, KRMeantime, and DCMeantime. Within the user join event, a new
user is created, and an access policy is randomly generated according to the
method described earlier. The version of each decryption key component of
the data sub-policy is set to the latest version. Within the data production
event, a new data ciphertext is created and randomly labeled according to the
method described earlier. The version of each ciphertext component, except for
the dummy attribute, is set to the latest version. Within the key revocation
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event, the simulator chooses a user to revoke at random. The simulator runs
for a simulation time SimTime, and, when the simulation ends, it outputs the
number of operations and the traffic overhead experienced by each entity in
both schemes.

In the first set of simulations, we evaluate the computational load for users
and data owner in terms of time. For each type of cryptographic operation, we
multiply the number of operations for the time needed to perform that opera-
tion. We obtained the time needed to perform each cryptographic operation by
running a benchmark on a device. In this set of simulations, we set the simula-
tion time SimTime equal to one year; a user join event occurring on average every
six hours, i.e., UJMeantime = 6h; a key revocation event occurring on average
every six hours, i.e., KRMeantime = 6h; a data production event occurring on
average every hour, i.e., DPMeantime = 1h; a data consumption event occurring
on average every hour per user, i.e., DCMeantime = 1h; an initial number of
users nInitUsers = 1000; a data sub-universe of |UD| = 100 attributes; an up-
date sub-universe of |UU | = 2ˆ︁(log2 ((nInitUsers+ SimTime/UJMeantime) · 2))
to have enough identities for all the users; an initial database of nInitCtxs =
10 000 data ciphertexts; a number of attributes in each data sub-policy nKeyAttrs =
10; and a number of attributes labeling each data ciphertext nCtxAttrs = 30,
plus the dummy attribute. For the KP-ABE scheme, we considered a 512-bit
elliptic curve with embedding degree 2 that admits an efficiently computable
symmetric pairing. For digital signature algorithm and asymmetric encryp-
tion, we considered ECDSA with the secp160r11 curve, and RSA with 1024-bit
key, respectively. With these settings, the scheme provides for 80-bit security
strength.

In order to evaluate the computational load for users and data owner in terms
of time, we considered an IoT scenario in which these entities are equipped with
a single-board computer, namely a Raspberry Pi 3 Model B+. This scenario is
typical in IoT. For example, the IoT smart city application described in [6, 19]
includes some IP cameras that record the traffic on the streets and send videos
to a central gateway (our data owner). The gateway stores on the cloud server
multiple short video files in an encrypted form, in such a way to implement a
sort of encrypted streaming. Many smart vehicles (our users) want to access
videos to detect possible traffic congestion in advance and choose more conve-
nient routes. Such smart vehicles can be authorized to access videos produced
only by a given set of cameras at some given days/hours, depending on the ser-
vice subscription type. Note that the ECUs of vehicles are typically single-board
computers, whose computation capabilities are comparable to the Raspberry Pi
that we considered. We ran benchmarks on the Raspberry Pi to determine the
time needed to perform each operation, using the PBC library2 for pairing-based
operations and OpenSSL 1.0.1k library3 for ECDSA and RSA. Table 5 shows
the results of these benchmarks.
In Figs. 5a and 5b we report simulation results for our scheme, and we show the

1https://www.secg.org/SEC2-Ver-1.0.pdf
2https://crypto.stanford.edu/pbc
3https://www.openssl.org/source/old/1.0.1
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Operation Type
Time (ms)

Mean 95% CI

Bilinear Pairing 15.663 ±0.003 71
Operation in G1 9.495 ±0.0326
Operation in GT 2.037 ±0.0103
Signature 0.445 ±0.000 163
Verification 1.656 ±0.001 27
Asymmetric Encryption 0.208 ±0.000 057 4

Table 5: Raspberry Pi 3 Model B+ benchmark. Table shows mean values
averaged on 1000 independent repetitions and 95% confidence intervals.

portions of time spent by the average user and data owner performing crypto-
graphic operations, averaged on 30 independent repetitions.

Operations in GT: 15%

Operations in G1: 15%

Pairings: 68%
Sign. Verifications: 2%

(a) User

Operations in G1: 98%

Operations in GT: < 1%
Signatures: < 1%
Pairings: 2%

(b) Data Owner

Figure 5: Time percentage spent on each cryptographic operation in our scheme.

The user spends 98% of the time performing pairing-based operations. Opera-
tions in G1 are performed during key update and re-encryption, while bilinear
pairing and operations in GT are performed during decryption of both data
and update ciphertexts. Despite the number of operations in GT is greater
than the number of bilinear pairings, the latter metrics is indisputably the most
burdensome for the user with 68% out of the total time. On the data owner,
the load due to pairing-based operations is even more evident. Indeed, more
than 99% of the time is employed for KP-ABE encryption. Digital signature
algorithm and asymmetric cryptography operations take only 2% of the time
for the user and less than 1% of the time for the data owner, and this confirms
that the pairing-based operations have the highest impact on the performance
of the scheme.
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In the second set of simulations, we compare the performance of our scheme
with the YWRL one by varying the frequency of a key revocation event, i.e., by
varying 1/KRMeantime. As already pointed out, for providing more security our
scheme introduces some costs which mainly weigh on the user, who is actively
involved in key update and re-encryption tasks. The more we raise the key
revocation frequency, the more the computational load on the user will increase
as he/she will be required to update his/her decryption key and/or ciphertexts
more often. We set the user join frequency to be equal to the key revocation
one, so, on average, the number of users remains constant throughout the sim-
ulation. We ran this set of simulations for four different frequencies, and we
report results regarding the average user’s load in Fig. 6.
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(c) Operations in GT

Figure 6: User load due to pairing-based operations in a one-year-long simula-
tion. Graphs show how the user load varies with regards to the key revocation
frequency. The initial number of users is 1000. Graphs show 95% confidence
intervals.

For key revocations occurring on average every week, the difference of load be-
tween the schemes is negligible, namely about 660 operations in G1, 50 pairings,
8775 operations in GT in one year. Despite the high number of operations in
GT , this type of operation is very fast, and the difference between the schemes
is almost constant for all the tested frequencies, varying in the range of 18 s and
23 s. For key revocations occurring on average every day and every six hours,
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the difference of load between the schemes is still limited. Indeed, the overhead
is about 6 s in a year for the additional pairings and about 125 s for the op-
erations in G1. Notably, the operations in G1 can be divided into operations
performed for key update and operations performed for re-encryption. In the
case re-encryption is not a peculiar feature for an application, the time spent
performing operations in G1 drops from 125 s to about 4 s. For key revocations
occurring on average every hour, the overhead introduced by our scheme grows
by a significant amount, mainly due to re-encryption operations. However, sys-
tems in which a key revocation is so frequent should be uncommon.

In the third set of simulations, we aim at showing the behavior of the schemes
for different average number of users. To this purpose, we varied the initial
number of users nInitUsers from 1000 to 8000. Moreover, we set KRMeantime =
6h, and UJMeantime to the same value. This allows to maintain an average
number of users close to the initial number of users throughout the simulation.
As before, each simulation is averaged on 30 independent repetitions. In Fig. 7,
we show that our scheme scales with the number of users. Indeed, in these
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Figure 7: User load due to pairing-based operations in a one-year-long simula-
tion. Graphs show how the user load varies with regards to the initial number
of users. Key revocation frequency is 1/6hours. Graphs show 95% confidence
intervals.

graphs we point out that the average user’s load decreases with the number
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of users in the system. We report results for a key revocation frequency of
1/6hours, but this trend holds independently of the key revocation frequency
value. In Figs. 7a and 7c, we observe that the number of pairings and operations
in GT remain almost constant, independently of the number of users, while the
number of operations in G1 (Fig. 7b) decreases significantly. This is because the
re-encryption of ciphertexts is distributed among more users which participate
in updating the ciphertexts, and, hence, the number of operations per user
decreases. Compared to the YWRL scheme, where the load experienced by each
user is not influenced by the the number of users in the system, in our scheme
an additional cost weighs on the user. However, the difference of computational
cost for pairings and operations in GT is limited. Moreover, the difference of
number of operations in G1 per user decreases with the number of users. Its
lower bound tends to the number of operations executed only for the key update
task. As shown with the previous set of simulations this cost is negligible.

In Table 6, we show a comparison of the traffic overhead experienced by
each entity in both schemes. The simulator was configured as in the first set

Entity Scheme
Download (MB) Upload (MB)
Mean 95% CI Mean 95% CI

Data owner
Our 0.0000 0.0000 81.6680 ±0.5746
YWRL 0.0000 0.0000 22.5177 ±0.0757

Cloud server
Our 920.5880 ±4.7833 5067.4901 ±61.8700
YWRL 22.5177 ±0.0757 4895.8708 ±60.9210

User
Our 5.0832 ±0.0026 0.8425 ±0.0110
YWRL 4.9110 ±0.0095 0.0000 0.0000

Table 6: Traffic overhead comparison. Table shows mean values averaged on 30
independent repetitions and 95% confidence intervals.

of simulations. For convenience, we recall that the simulation time is one year,
the initial number of users is 1000 and the key revocation frequency is 1/6 h.
In both schemes, the data owner experiences only upload overhead as result
of the execution of data production and key revocation procedures. In our
scheme, the upload overhead is about four times the one in the YWRL scheme.
This is because in the key revocation procedure, besides the cloud re-encryption
keys, our scheme includes the overhead due to the transmission of user re-
encryption keys and update ciphertexts. However, we stress that computational
and communication costs for the data production procedure are equivalent in
both the schemes. This means that when data owner and key authority are
different entities, the additional cost of our scheme weighs only on the key
authority. In Table 6, we observe that the cloud server is inevitably the most
loaded entity as it communicates with all the users and with the data owner.
Though in our scheme the cloud server generates a high download overhead,
we note that the upload overhead is about the same in both the schemes. The
additional download overhead is mainly due to the communication with the
users, which update their keys and ciphertexts and upload them on the cloud
server. However, by looking at the upload overhead experienced by the single
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user, we notice that is negligible, namely 0.84MB per year. Also the download
overhead experienced by the user is limited, and the difference between the two
schemes is negligible, namely 0.17MB per year. As we showed that our scheme
scales with the number of users, these differences are further reduced when more
users are part of the system.

7 Conclusions

In this paper, we proposed a revocable KB-ABE scheme that ensures data con-
fidentiality and fine-grained access control even if the cloud server comes into
possession of revoked keys. We then formally proved that the proposed scheme
is secure in the Selective-Set model under the Decisional Bilinear Diffie-Hellman
assumption. Finally, we analyzed the computational costs and performed simu-
lations to show that in our scheme the user experiences a slightly higher compu-
tational cost with respect to the Yu et al’s scheme [17], which does not provide
for revocation undoing resistance. Considering an IoT scenario, for example a
smart city application like in [6, 19], and assuming 8000 users equipped with
Raspberry Pi boards and revocations occurring on average every six hours, a
one-year-long simulation revealed that the average user experiences a load (in
terms of computation time) 7.37% higher than Yu et al.’s scheme. Also, the
simulations showed that our scheme is scalable with the number of users, i.e.,
the more users are in the system, and the less load introduced to each user.
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